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Abstract—The AV1 deblocking filter did not sufficiently 

attenuate visual quality artifacts when used in the AOMedia video 
model (AVM), especially at lower bitrates. A generalized 
deblocking filter described in this paper uses one equation for any 
filter length. The filter brings PSNR-YUV BD-rate –0.17%,  
–0.90%, –1.07%, and –0.92% on All Intra, Random Access, Low-
Delay, and Adaptive Streaming configurations in the AOMedia 
common test conditions. Improvement of visual quality is 
observed on a number of sequences, while the computational 
complexity is close to that of the AVM deblocking.  
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I. INTRODUCTION 
AV1 specification [1] was finalized by the Alliance for Open 

Media (AOMedia) in 2018. Recently, AOMedia has started 
exploration of video compression technologies beyond AV1. 
The exploration efforts are based on a joint software base, called 
the AOMedia Video Model (AVM) [2], which is publicly 
available online. The tools evaluation work is happening in 
stages, where experiments at each stage use the same version of 
the AOMedia software called anchor.  

This paper describes the deblocking filter proposed in these 
exploration efforts and adopted in the AVM software. The 
deblocking filter is a video coding tool used in the majority of 
recent video coding standards. Since a typical video codec 
operates on rectangular blocks, the signal representation of each 
block at lower bitrate can deviate from the underlying signal. As 
transform and quantization is applied independently in each 
coding blocks, this may cause visually noticeable boundaries 
between the neighboring blocks, called block artifacts. The 
deblocking filtering is designed to mitigate these artifacts.  

The deblocking is usually used in-loop, i.e. applied to the 
decoded pictures before storing them as reference pictures for 
further prediction. Applying deblocking to reconstructed 
pictures helps to not only improve the output video quality but 
also quality of reference pictures, thus resulting in further 
compression efficiency improvements. Different algorithms for 
in-loop deblocking filtering exist, such as deblocking in H.264 
[3] and HEVC standards [4]. The deblocking filter used in VVC 
standard [5] is based on the HEVC deblocking filtering with 
some longer deblocking filters applied to larger blocks and short 
deblocking filters applied to 4x4 blocks.  

Deblocking filters typically use information sent in the video 
bitstream (such as location of the transform and prediction block 
boundaries, block sizes, and quantization parameters) to 

determine picture locations where discontinuities may appear. 
Then, the deblocking filtering evaluates the signal at the sides of 
the block boundary to determine the strength of the filtering to 
be applied and whether the filtering should be applied at all. 
Typically, stronger filtering is applied when the signal is smooth 
on both sides of the boundary, which indicates that a 
discontinuity is likely caused by compression and may also be 
more visible in this area.  

As other video codecs, AV1 uses a deblocking filter. During 
the AVM development, some changes have been made to the 
software, including a different quantization scheme that allowed 
coding at lower bitrates. The AV1 deblocking had no longer 
masked all block artifacts effectively in AVM. The deblocking 
approach described in this paper has been able to improve the 
subjective quality of AVM, especially at lower bitrates, while 
also improving the objective metrics.  

The paper is organized as follows. Section II gives a brief 
overview of the AV1 deblocking filtering. Section III explains 
the proposed AVM deblocking. Section IV describes the results, 
including objective performance improvements and 
improvements in visual quality. Section V discusses the 
decoding complexity aspects, while Section VI concludes the 
paper. 

II. AV1 DEBLOCKING FILTEIRNG 
AV1 deblocking filter uses several filter lengths. For the 

luma color component, filters can modify 1, 2, 3, and 6 samples 
from the block boundary. One more sample is required for 
filtering decisions. For chroma components, 1 or 2-samples 
from the boundary can be changed. The choice of the maximum 
filter length is determined by the minimum size of adjacent 
blocks in the direction of filtering.  

The deblocking can be applied if there are transform 
coefficients present in one of the adjacent blocks or the block 
boundary is a prediction block boundary. 

The filters used in AV1 deblocking are low-pass filters. To 
avoid over-smoothing of textures, a boundary condition is 
checked. The boundary samples are classified as low and high 
variance by using the following equations (see Fig. 1): 

| s[ –2 ] – s[ –1 ] | > T0   (1) 

| s[ 1 ] – s[ 0 ] | >T0   (2) 

2 | s[ 0 ]  – s[ –1 ] | + | s[ –2 ] – s[ 1 ] | / 2 > T1 (3) 

 



 
Fig. 1. Block boundary with adjacent samples. 

 
Here s[i] are values of reconstructed samples with  
i = –1,…, –N–1 located on the left (top) and i = 0, …N on the 
right (bottom) of the block boundary. T0 and T1 are threshold 
values that can be adjusted at the frame or frame segment level. 
Also, the filtering strength and thresholds can be set separately 
for the vertical and horizontal block boundaries in the luma 
component. In chroma components, the same value of the 
deblocking strength is used for both vertical and horizontal 
boundaries. 
 
When the AV1 deblocking filter can modify more than two 
samples  from the block boundary, additional samples are 
checked by the following conditions: 

| s[–i –2] – s[–i –1] | > T0  (4) 

| s[ i ] – s[ i –1 ] | > T0   (5) 

 

III. PROPOSED DEBLOCKING FILTERING 
The deblocking filtering consists of three main stages. The 

first stage determines locations of block boundaries based on 
the bitstream and reconstruction information. It also determines 
whether the deblocking can be applied to the boundary and 
finds the maximum number of samples that deblocking can 
modify. At the next stage, the samples on both sides of the 
boundary are examined, and the length/strength of the filtering 
may be adjusted based on the local content characteristics. 
Finally, the deblocking filtering operations are applied based on 
the decisions made in the first two stages.    

A. Bitstream based deblocking filtering decisions 
Bitstream-based decisions have not changed significantly 

from to AV1. The main difference is that for blocks of size 4 in 
the direction of filtering, only one sample from the block 
boundary is modified, and three samples accessed for the 
filtering decisions. This is done to avoid deblocking 
dependencies across the picture since the deblocking filtering 
decisions use at least 3 samples from the block boundary. The 
maximum length of the deblocking filtering has changed, which 
is described in subsection D.  

B. Sample based deblocking filtering decisions 
The actual length of the deblocking filtering is found based 

on the sample values at the sides of the block boundary. The 
filtering decisions are made for each line of the block boundary 
based on the sample values in this line. For each line, (see Fig. 
1) the first derivative of the signal is calculated as  

d1[ i ] = s[ i+1 ] – s[ i ].    (6) 

Then, the absolute value of the second derivative is found as  

d2[ i ] = | d1[ i ] – d1[ i – 1] |.  (7) 

 

 
For modification of N samples from the block boundary, all of 
following conditions should be false. Eq. (8) should be 
evaluated to false for one sample from the block boundary to be 
modified. Comparisons in (8) and (9) should be false for 
modification of 2 samples from the block boundary.  
 

d2[ i ] > thr1 for i =1, –2      (8) 
d2[ 0 ] + d2[ –1] > thr2   (9) 

 
For modification of N samples, where N is greater or equal to 
3, comparisons (10) and (11) are evaluated in addition to (8) 
and (9), which should also be false. The conditions are 
evaluated for values of N increasing from 0 to the maximum 
value allowed for the current block, and the evaluation stops 
once any evaluated condition holds true. The previous value of 
N is selected as the maximum length of the deblocking filtering. 
 

| (s[ 0 ] – s[ N ] ) – N ( s[ 0 ] – s[ 1 ]) | > thr3,  (10) 

| (s[–1] – s[–N–1] ) – N (s[–1] – s[–2]) | > thr3  (11) 
 

Values of thresholds thr2 and thr3 depend on N with lower 
values assigned to higher N, so that longer deblocking filters are 
applied to smoother areas.  
 
In the above, thresholds thr1 and thr3 are used for evaluating 
the texture smoothness on each side of the block boundary and 
depend on a so-called side threshold. The thr2 as well as thr4 
from the next sub-section are determined based on the 
quantization step size. Both the side threshold and q threshold 
values depend on the quantization index and can be modified 
by offsets sent in the bitstream.  

C. Deblocking filtering operations 
Deblocking filtering operations of AV1 are replaced by the 

generalized filtering operation. The same equation is used for 
modifying N samples at the block boundary. Provided the 
number of samples to be modified by the filter on each side of 
the block boundary is N, the following operations are applied. 

D = ( 3(s[0] – s[–1]) – ( s[1] – s[–2] ) ) / 2  (12) 

D¢ = clip( D, – thr4, thr4 )    (13) 

s¢[ i ] = s[ i ] – D (N – i) / (2N + 1),  for  i = 0,…, N –1        (14) 

s¢ [–i –1] = s[–i –1] + D(N – i)/(2N + 1), for  i = 0,…, N –1 (15) 

Here s[i] are sample values before the deblocking filtering at 
position i and s¢[i] are sample values after the deblocking 
filtering. The clip(v, vmin, vmax) function limits the value of v to 
the interval [vmin, vmax]. 

Parameter D has been derived to minimize the second 
derivative of the signal across the block boundary provided that 
the samples at the block boundary are modified in the way 
described above. The underlying assumption is that deltas for 
each sample position are inversely proportional to the distance 
from the block boundary to form a smooth transition between 
signals on both sides of the boundary (see Figs. 2 and 3). 



Note that the signal on the sides of the block boundaries in 
Fig. 3 has variations, it is not exactly smooth. Typically, a low-
pass deblocking filter would remove such variations, which may 
be related to the boundary artifacts or may be part of the original 
signal. Since AVM has other in-loop filters applied after of 
deblocking, the proposed deblocking filter avoids modifying the 
texture on the side of the boundaries, leaving it to other loop 
filters if necessary.  

 Filtering operations in (14) and (15) have been implemented 
in integer arithmetic without use of divisions. Multiplications 
and shifts have been used instead. 

D. Deblocking filtering length 
The proposed deblocking AVM filter can modify the 

following number of samples from each side of the block 
boundary:  

• 1, 2, 3, 4, 6, 8, or 10 samples from each side of the 
block boundary. 

• 1 to 4 samples for chroma.  

The number of samples modified by deblocking has been 
increased compared to AV1. Even though the proposed 
deblocking method has improved that objective and subjective 
quality, some artifacts at lower QPs and large blocks sizes (e.g. 
on 32x32 blocks) could not be completely removed with shorter 
filters. Longer filters were found to improve visual quality at 
higher QPs, especially in higher resolution sequences.  

In order to keep the same line buffer size as in the AV1 
deblocking, the maximum length of filters that could be applied 
at the horizontal superblock boundary was chosen to be: 

• 6 samples for the luma component 

• 2 samples for the chroma component  

As mentioned previously, filtering decisions require one 
additional sample at each side of the block boundary, except the 
case of 4x4 blocks, where 1 sample is modified and additional 2 
samples are required for the filtering decision (3 samples in total 
to find the second derivative). 

E. Signaling of deblocking parameters 
Signaling of the deblocking parameters has also been 

modified. In the proposed filter, a default index to the table with 
threshold values is based on the quantization index. An offset 
to the default index can be signaled in the bitstream on the 
frame or frame segment level. In addition, parameters for 
horizontal luma boundaries can be set equal to the parameters 
of the vertical luma boundaries to save bits. Otherwise, separate 
values for the vertical and horizontal parameter indices can be 
sent in the bitstream. Signaling of the deblocking parameters 
can thus be more efficient than in AV1, which always sends 
explicit parameters that determine deblocking thresholds. 

F. Other modifications  
Some modifications were applied to the offset-based intra 

prediction refinement (ORIP) tool [9]. For blocks larger than 16 
samples in the direction of filtering, the refinement of prediction 
is switched off for the boundary across the direction of filtering 
since it may negatively interact with deblocking in some cases.  

IV. RESULTS 
The algorithm has been implemented in the AVM software 

[6] version 2.0.0. The experiments have been done according to 
the AOMedia Common Test Conditions (CTC). The AOMedia 
CTC include All Intra (AI), Random Access (RA), Low Delay 
(LD), and Adaptive Streaming (AS) configurations. The 
Adaptive Streaming configuration uses multi-resolution 
encoding and construct a convex hull over obtained points to 
calculate the BD-rate [11]. The objective results are obtained 
on 60 mandatory CTC test sequences separated into several 
classes, according to their resolution and content. For example, 
class B1_SYN contains synthetic content primarily of 1080p 
resolution. All sequences are 130 frames long, with RA 
configuration using two closed GOP of 65 frames each. Only 
first 30 frames are encoded in the All Intra test configuration. 

A. Objective results 
The results are shown in Tables I-IV. One can observe the 

PSNR-YUV BD-rates [11] of –0.17%, –0.90%, –1.07%, and  
–0.92% for the AI, RA, LD, and AS configurations, 
respectively. The “N/A” in some cells of Table IV 
corresponding to chroma BD-rates are due to the convex hull 
optimization based on PSNR of the luma component. 
Consequently, this may cause non-monotonicity in chroma 
components of some sequences, for which the BD-rate cannot 
be calculated.  

 
Fig. 2. Example of deblocking for modification of 6 samples from each 

side of the boundary. Original samples are blue, samples after deblocking 
are red. The remaining discontinuity in the middle is due to the integer 

representation. 

 
Fig. 3. Example of filtering operations. Note that variations in signal on 

the side of the block boundaries are preserved after the filtering is applied. 

 



TABLE I.  AVERAGE BD-RATES IN ALL INTRA (AI) CONFIGURATION IN 
AOMEDIA CTC  

Seq. Class Y U V YUV 
A1_4K -0.14% -0.59% -0.65% -0.20% 
A1_2K -0.12% -0.49% -0.59% -0.16% 

A3_720p -0.16% -0.74% -0.64% -0.21% 
A4_360p -0.24% -0.86% -0.75% -0.27% 
A5_270p -0.23% -0.51% -0.25% -0.24% 
B1_SYN -0.12% -0.62% -0.75% -0.18% 
Overall  -0.15% -0.60% -0.63% -0.19% 

 

TABLE II.  AVERAGE BD-RATES IN RANDOM ACCESS (RA) 
CONFIGURATION IN AOMEDIA CTC 

Seq. Class Y U V YUV 
A1_4K -1.41% -1.74% -1.91% -1.46% 
A1_2K -0.97% -1.47% -1.51% -1.01% 

A3_720p -0.81% -1.60% -1.16% -0.85% 
A4_360p -0.63% -1.14% -1.17% -0.67% 
A5_270p -0.40% -0.21% -1.10% -0.42% 
B1_SYN -0.59% -1.50% -0.80% -0.64% 
Overall  -0.86% -1.41% -1.31% -0.90% 

 

TABLE III.  AVERAGE BD-RATES IN LOW DELAY (LD) CONFIGURATION 
IN AOMEDIA CTC  

Seq. Class Y U V YUV 
A1_2K -1.39% -1.37% -1.61% -1.40% 

A3_720p -1.20% -2.04% -1.77% -1.27% 
A4_360p -0.54% -0.78% -1.73% -0.59% 
A5_270p -0.30% 0.15% -1.44% -0.32% 
B1_SYN -0.81% -0.82% -1.41% -0.84% 
Overall  -1.05% -1.16% -1.59% -1.07% 

 

TABLE IV.  BD-RATES IN ADAPTIVE STREAMING (AS) CONFIGURATION 
IN AOMEDIA CTC 

Sequence Y U V YUV 
BoxingPractice -1.49% -1.21% -1.37% -1.47% 
CrossWalk -1.54% -0.64% -0.08% -1.40% 
FoodMarket2 -0.80% -0.42% -0.31% -0.75% 
Neon1224 -0.98% -1.69% -1.35% -1.05% 
NocturneDance -0.50% #N/A* #N/A* -0.56% 
PierSeaside -0.21% #N/A* #N/A* -0.26% 
Tango -1.45% -1.21% -1.02% -1.40% 
Timelapse -0.57% #N/A* #N/A* -0.49% 
Average -0.94% #N/A* #N/A* -0.92% 

 

* #N/A in U and V cells correspond to non-monotonic Quality(Rate) curves caused by optimizing the 
convex hull for the Y component. 

B. Visual quality examples 
Visual quality examples can be seen in Figs. 4-6. The 

figures use higher values of QP settings (235 and 210) to 
emphasize the differences when printed, but visual quality 
improvements have also been observed at lower QPs, including 
base QP 160. It should be noted that the QP parameter in the 
AVM configuration settings corresponds to the highest frame 
QP in the prediction hierarchy, while frames of lower layers use 
lower QPs. The range of QPs in AVM is from 0 to 255.  

C. Expert viewing test 
An expert viewing test has been performed in the AOMedia 

Codec Working Group to study the effect of the proposed 

deblocking on visual quality [10]. The expert viewing was 
performed by volunteers at their facilities, and the results were 
collected through the online submission form. The test 
organizers provided test subjects with the scripts to play the 
decoded sequences and with scoring sheets. ABAB playback 
order was used, where A and B were decoded sequences of 
AVM 2.0.0 and the proposed method. The presentation order of 
AVM and the proposal was randomized for each pair. The 
following scale was used: “A is much better than B”, “A is better 
than B”, “A is equal to B”, “B is better than A”, “B is much 
better than A”. The scores were de-randomized and converted to 
values from {-2, -1, 0, 1, 2} set. The 95% confidence intervals 
were calculated. Overall, 18 sequence/QP test points have been 
evaluated based on 9 sequences, 2 QPs per sequence, and a 
choice of LD and RA configuration encodings. Base QPs of 160, 
185, 210, and 235 were used. Overall, 19 test subjects 
participated in the test. 

It was found that the proposal was better than the anchor 
(i.e. statistically significant difference was observed) in 11 of 
18 test cases. In 7 test cases, there was no statistically 
significant difference. In particular, none of the four QP160 test 
cases showed statistically significant difference, while there 
were test cases with statistically significant differences among 
base QPs of 185, 210, and 235.   

V. DECODING COMPLEXITY  
The decoding complexity has been measured separately 

since timing on the computational cluster is not reliable. In 
particular, the decoding of AVM and the proposal was done on 

 

  
(a) AVM v.2.0.0 (b) Proposed 

 
Fig 4. Screen shot of sequence Riverbed, RA, QP 235. 

 

  
(a) AVM v.2.0.0 (b) Proposed 

 
Fig 5. Screen shot of sequence Sol Levante Dragons, RA, QP 210. 

 
 



the same machine, using one GOP of RA configuration of all 
mandatory CTC sequences, and the total decoding time was 
obtained. MacBook Pro with 2.3 GHz 8-Core Intel Core i9 was 
used for the simulations. The decoder output was directed to 
/dev/null to exclude the effect of writing reconstructed files to 
the disk. 

The first test reported in Table V used the decoder compiled 
with SIMD. Note that the AV1/AVM deblocking had complete 
SIMD coverage of sample-based deblocking decisions and 
filtering operations, while the proposed method had no SIMD 
optimizations. One can see the decoding time increase of 8.5% 
over AVM.  

To compare the performance of the proposal without the 
SIMD optimization effect, another comparison was done with 
both decoders compiled without SIMD in any part of the code 
(see Table VI). One can observe that the increase in the decoding 
time is below 1% which indicates the decoding time similar to 
  

TABLE V.  DECODING TIME WITH SIMD. AVM’S DEBLOCKING IS FULLY 
SIMD OPTIMIZED, THE PROPOSAL HAS NO SIMD IN DEBLOCKING  

Time AVM  (s) Time proposal (s) Dec. time (%) 

787.87 902.35 114.53% 

 

TABLE VI.  DECODING TIME COMPARISON WITH SIMD OFF  

Time AVM (s) Time proposal (s) Dec. time (%) 

3177.38 3199.04 100.68% 

 

the decoding time of AVM deblocking. The increase in the 
encoding time has not been significant since the deblocking 
filter runtime is negligible compared to the test model encoding 
time. 

VI. SUMMARY 
The proposed deblocking has shown PSNR-YUV BD-rate 

(average bit rate reduction for the same quality) of –0.17%,  
–0.90%, –1.07%, and –0.92% for All Intra, Random Access, 
Low-Delay, and Adaptive Streaming configurations. The 
number of line buffers is the same as in AV1 deblocking, and 
the computation complexity is not significantly higher. Visual 
quality improvements have been observed on a number of test 
sequences at higher quantization settings. 
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Fig 6. Screen shot of sequence Tango, RA, QP 235 


