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Abstract: Film grain is abundant in TV and movie content. It is often part of the 
creative intent and needs to be preserved while encoding. However, the random 
nature of film grain is difficult to compress using traditional coding tools. This 
paper describes a film grain modeling and synthesis algorithm proposed for the 
AV1 video codec. At the encoder, an autoregressive model of film grain is 
transmitted relative to a denoised signal, and the film grain strength is modeled 
as a function of intensity. The corresponding renoising at the decoder is 
implemented using an efficient block-based approach suitable for use in 
consumer electronic devices. Preliminary results indicate that the approach can 
give significant bitrate savings (up to 50%) on sequences with heavy film grain. 

1. Introduction 
In the entertainment industry, film grain is widely present in the motion picture and TV 
material and is considered part of the creative intent. The grain is inherent in analog 
motion picture film due to the process of exposure and development of silver-halide 
crystals dispersed in photographic emulsion [2] as randomly distributed grains appear at 
the locations where the silver crystals have formed. Digital cameras do not produce film 
grain; however, in post-production, film grain is often added to the captured material to 
create the “movie” look. Therefore, when encoding motion picture and TV content, it is 
important to preserve film grain to maintain the creative intent of the content creators.  

Another type of noise in videos is created by digital camera sensors. This noise is usually 
uncorrelated between the samples and has different characteristics from film grain. 
However, after scaling and compression (e.g., at the mobile device) the video can 
produce noise patterns similar to the film grain. 

Film grain has the following characteristics: 1) the noise is spatially correlated and grains 
can be more than one sample in size, 2) noise is temporally independent, and 3) 
originally, film grain in color components is independent and follow a multiplicative 
noise model. However, the latter was found to not be true for significant part of content 
with film grain in the Netflix database. The conceived reasons are color component 
transformation followed by downsampling of chroma components and various post-
processing applied to the video at the post-production stage. 
Since film grain and sensor noise shows a high degree of randomness, it is difficult to 
compress  efficiently. Randomness makes prediction difficult, motion estimation less 
precise, and the prediction residual in case of motion compensation contains noise with 
twice the variance of the film grain. Prohibitively high bitrates are often required to 
reconstruct film grain with sufficient quality. Moreover, from our experience, some 
encoding tools, such as a de-ringing filter, may additionally suppress film grain. 



There have been a number of attempts to address the film grain encoding problem. A 
typical approach involved detecting the film grain, denoising the source video and 
estimating the film grain parameters. The film grain can later be synthesized from the 
parameters estimated at the encoder side and added to the reconstructed video. Some 
approaches to this problem have been previously described in the literature [1], [2], [3], 
[4], and [6]. For film grain modeling, [2], [4], and [6] used autoregressive (AR) process. 
A coded film grain sample with mirroring and rotation transformations was used in [3] to 
synthesize the grain in the decoder. A number of approaches addressed film grain noise 
removal, ranging from using a video encoder as denoiser [3] to a Wiener type filter [1], 
non-linear denoising with total variation minimization [6] and multi-hypothesis motion 
compensated filtering [4], [5]. Film grain parameters are typically estimated on flat 
regions of the picture. An optional film grain characteristics supplemental enhancement 
information (SEI) message was defined in the H.264 video compression standard [8]. The 
technology was mostly based on the methods proposed in [2], which comprised 
generation of film grain based on filtering of the Gaussian noise in the transform domain 
and an AR process. An additive and multiplicative noise models were supported along 
with specifying intesity intervals that could use different film grain. The same SEI 
message is supported in the HEVC standard [9]. These SEI messages, however, are not 
frequently supported in video decoders, which makes it difficult to rely on their presence 
in an open video distribution system.  
This paper presents a film grain syntesis tool proposed for the AV1 video codec [10] in 
the Alliance for Open Media (AOM). The motivation for including this tool is to provide 
mandatory support of the film grain synthesis in the AV1 video codec. The proposed tool 
uses an autoregressive model to support a range of different noise characteristics, varying 
from film grain to sensor noise and compressed sensor noise (Section 3). Additionally, 
the tool also supports flexible modeling of the relationship between film grain strength 
and signal intensity, which includes both additive and multiplicative models (Section 4). 
The noise parameters are signaled in the bitstream and an efficient block-based approach 
is proposed to synthesize the noise at decoder (Section 5). Preliminary subjective 
comparison indicates that the proposed approach can give significant bitrate savings (up 
to 50%) on sequences with heavy film grain noise (Section 6).  

2. Proposed film grain framework 
The proposed film grain modeling and synthesis framework is shown in Fig. 1. The film 
grain is removed from the video by a denoising process, and the grain parameters are 
estimated from the flat regions of the difference between the noisy and de-noised 
versions of the video sequence; these parameters are sent along with the compressed 
video bitstream. 
After the decoding, the film grain is synthesized and added to the reconstructed video 
frames. A number of approaches have been proposed in the literature for film grain 
denoising, including those described in [1], [4], [5], and [6]. Although high quality film 
grain removal is an important step in the overall system design, this paper does not 
address this topic in great detail and focuses on aspects of film grain modeling and 
synthesis.  



The details of the algorithm are as follows. When the film grain/noise parameters are 
estimated, it is important to make sure that only smooth regions of the picture are used in
estimation, since edges and textures can affect estimation of the film grain strength and
pattern. To determine smooth areas of the picture, the Canny edge detector [7] is applied 
to the denoised image at different scales, followed by the dilation operation. The 
thresholds in Canny detector are proportional to the local intensity of the signal and are 
therefore adapted to the luminance. Figure 2 shows an example of the image that is 
produced by applying Canny edge detection at three scales to the denoised video
followed by dilation. The low luminance areas are also excluded from film grain pattern 
estimation. 
After the regions to detect the film grain are determined, film grain intensity and pattern 
are determined in these areas, as described in the following section. 
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Figure 1: Proposed framework for film grain estimation and synthesis 

 

 
Figure 2: Areas used for film grain estimation (black) 



3. Modeling film grain pattern 
The film grain pattern is modeled with an autoregressive process. This autoregressive 
model is used to synthesize a template with film grain at the decoder. 
Let G(x, y) be a zero-mean film grain sample at the current position. For lag L = 2, the 
grain sample G is calculated as follows (see Fig. 3): 
 G(x, y) = a0 G(x − 2, y − 2)  + a1 G(x − 1, y − 2) + a2 G(x, y − 2) +… + z, (1) 
where a0… an are AR-coefficients, G(x + k, y + m) are previous film grain sample values 
in the causal neighborhood, and z is the unit-variance Gaussian noise. The Gaussian 
variable z can be obtained from a predefined set stored at the decoder and encoder side. 
The number of AR-coefficients ai is determined by the lag parameter L and is equal to 
2L(L + 1) for luma and 2L(L + 1) + 1 for chroma component. In chroma components, 
there is one additional coefficient an to capture correlation with a luma grain sample at 
the same spatial position. The value of AR-coefficients lag L can take values from 0 to 3. 
In this case, L = 0 corresponds to the case of modeling Gaussian noise whereas higher 
values of L may correspond to film grain with larger size of grains. The AR-coefficients 
a0… an  are estimated by a method based on the Yule-Walker AR equations. An example 
of film grain synthesis and visualization of AR coefficients is shown in Fig. 4. Brighter 
colors in Fig. 4(c) correspond to higher values, and the background gray to zero. 

G(x,y)

a0

L = 2

a1 a2

 
Figure 3: Current sample of film grain G(x, y) with AR coefficients  

   
(a) Original grain (b) Synthesized grain (c) AR coefficients 
Figure 4: Example of film grain synthesis and corresponding AR coefficients 



4. Modeling film grain intensity 
Film grain strength can vary with signal intensity. As mentioned previously, film grain in 
the final material is not necessarily well represented with a multiplicative model. The
proposed approach uses direct coding of the film grain strength σ with a piece-wise linear 
function for each of Y, Cb, and Cr color components. When adding film grain to the luma 
component, the following model is used: 

Y´= Y + f (Y) GL,  (2)
where Y´ is the resulting luma re-noised with film grain, Y is the reconstructed value of 
luma (before adding film grain), and GL is the luma film grain sample. Here, f (Y) is a 
piece-wise linear function that scales film grain depending on the luma component value 
that is fit by measuring noise strength on flat regions of the input. This piece-wise linear 
function can be implemented as a precomputed look-up table (LUT) that is initialized 
before running the grain synthesis. The LUT (for both 8-bit or 10-bit video) have 256 
entries with 8-bit values. For video with bit depth higher than 8, linear interpolation is 
used to obtain values between the LUT entries. Fitting the scaling function to the data can 
be done with various methods. In the simulations for this paper, the scaling function was 
determined by using least squares fit to the local standard deviations of the flat areas to 
their local mean intensity values. Some additional criteria have been used, such as that 
scaling functions is equal to zero for the zero luma values. Figure 5 shows an example of 
representing the standard deviation of the film grain with a piece-wise linear function.  
Scaling film grain for the chroma component is done as follows. For a chroma 
component (e.g. Cb), the noise is modulated using the following formula: 

Cb´ = Cb + f (u) GCb, (3)
u = bCb Cb + dCb Yav  + h,  (4)

where u is the index into the look-up table that corresponds to a  Cb component scaling 
function. The index depends on both the Cb and luma components for the current pixel, 
which reflects the fact that the film grain in chroma may depend on the luma component

 
Figure 5: Scaling of film grain in luma, represented with a piece-wise linear function. 

Horizontal axis corresponds to luma values, vertical to standard deviation of film grain. 



(e. g. film grain in chroma may be close to zero in very low luminance signal and 
significant in the gray and white areas, although chroma values may be similar in both 
cases). The value of Yav is the average value of luma corresponding to this chroma 
sample (taken from one line of samples). For example, in 4:2:0 YCbCr, Yav = (Y1 + Y2 + 
1) >> 1, where Y1, Y2 are neighboring (co-located) luma samples on the even line.  

5. Film grain synthesis algorithm 
To reconstruct the film grain at the decoder side, the encoder/pre-processing module 
sends the following parameters to the decoder: lag value L, AR-coefficients a0… an, a set 
of points for a piece-wise linear scaling function for each color component, and values 
bCb, dCb, hCb , bCr, dCr, hCr for LUT index of chroma components. All values are signaled 
as (quantized) integers and take insignificant bandwidth compared to the coded video, 
especially at higher resolutions. The film grain parameters are signaled for the highest 
(display) resolution of the reconstructed video frames (AV1 [10] supports varying frame 
resolution, which allows coding some frames at a lower resolution than the display 
resolution). The parameters can take up to 145 bytes (including 64 bytes for scaling 
functions and 74 bytes for AR coefficients). The parameters are signaled once until later 
updated or for every frame if necessary. Sending parameters for every frame may help to 
maintain temporal consistency when film grain characteristics are changing gradually.  

5.1. Film grain synthesis and re-noising 
With received AR coefficients a0… an and stored Gaussian noise values, an AR process 
is run in a raster scan order to generate a 64×64 luma film grain template (and two 32×32 
chroma templates). The padding of L + 3 for chroma and L + 6 for luma is used when 
generating a template. Then, the film grain is consecutively applied on a 32×32 luma 
block basis to the reconstructed picture in the raster scan order. Luma grain blocks of size 
32×32 are randomly selected from the 64×64 template, the grain samples are scaled with 
the scale function LUT, described in Section 4 and added to the reconstructed sample 
values, followed by clipping. The 16×16 chroma blocks are collocated with 
corresponding luma blocks in the template. Selection of the 32×32 film grain block from 
the template is shown in Fig. 6.   
The pseudo-random generator is a shift-back linear-feedback shift register (LFSR) based 
on XOR of the length of 16 bits. The XOR-ed values 16, 14, 13, and 11 correspond to the 
feedback polynomial x16 + x15 + x13 + x4 + 1. The offsets sx and sy are generated using four 
and next four most significant bits on the register. The chroma offsets range from 0 to 15, 
while luma offsets are in multiples of two of chroma offsets. To enable parallel 
processing, the generator is initialized in the beginning of each row of 32×32 blocks with 
an expression that depends on the sum of syntax elements and the row number. 
The operation for adding grain to the samples of a 32×32 luma block is as follows: 
 Y´(x, y) = clip3( Y(x, y) + ((GL(x + sx, y + sy) * f (Y) + 2shift−1 ) >> shift ), a, b),  (5) 
where a and b define the legal range, x and y are coordinates inside the block, and 
parameter shift controls scaling of the film grain.  
When the template contains grain with relatively low frequencies, applying film grain in 
32×32 patches can result in visible block artifacts. To mitigate these effects, the 
algorithm has an option of overlap between the noise blocks. In this case, the luma block 



size is 34×34 with the two last rows and two last columns overlapping with the blocks to 
the right and to the bottom. The size of chroma blocks is then 16×16 with 1 sample 
overlap. The example of the overlapped luma blocks is shown in Fig. 7. The blocks 
overlap happens from the current block to the blocks below and to the right but not in the 
opposite direction. Therefore, no sample line buffer is needed.  
The overlap operation is applied to the noise samples before adding them to the 
reconstructed picture. When the block-wise processing is used, the decoder may need to 
store template offsets sx and sy for the grain blocks in the previous row in order to extract 
the overlapping rows of samples. The operation used for overlapped film grain samples 
over horizontal block boundaries in luma is as follows: 

Gcur(x, 0) = (27 * Gup(x, 32) + 17 * Gcur(x, 0) + 16) >> 5, (6)
Gcur(x, 1) = (17 * Gup(x, 33) + 27 * Gcur(x, 1) + 16) >> 5, (7)

where Gcur(x, 0) are samples of row 0 of the current block and Gup(x, 32) denotes samples 
of row 32 of the upper block. A similar (transposed) operation is used for grain blocks 
overlap across vertical block boundaries. Overlap between vertical block boundaries is 
applied first, followed by overlap between horizontal boundaries. The overlap operation 
between chroma blocks is done as follows: 

Gcur(x, 0) = (23* Gtop(x, 16) + 22 * Gcur(x, 0) + 16) >> 5 (8)
One can notice that the sum of the weights corresponding to the contribution of the 
blocks to the overlapped samples is not equal to one. This result is intended since to keep 
the constant variance of the noise, the sum of squares of the coefficients should add up to 
one (provided that the samples are uncorrelated, which approximately holds for boundary 
samples of the blocks obtained by random sx and sy offsets inside the template). 
Generally, using overlapped film grain windows instead of deblocking helps preserve
high frequencies, which may result in higher subjective quality. 

5.2. Memory requirements 

The proposed algorithm generally requires additional memory for the re-noised pictures.
The algorithm should not be applied inside the video decoder loop since the reconstructed 
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Figure 6: Film grain block (32×32) 

taken from 64×64 template with 
random x and y offsets 

Figure 7: Overlapped blocks: current 
block samples overlap only with the 
blocks to the right and below and not 
with the previously processed blocks. 



pictures used as references should be kept noise-free to provide bitrate savings. However, 
the algorithm can be applied as part of the display processing chain. 
When it comes to hardware implementation, the algorithm may require storing noise 
templates (one for luma and two for chroma) in on-chip memory. The samples of the 
template are stored with depth of 8 bits, which results in memory requirements of 4096 
bytes for the luma template and 1024 bytes for each of the chroma templates for 8-bit 
video. Please note that if chroma components are processed independently from luma, 
on-chip memory requirements are not additive and determined by the luma template size. 
When the grain block overlap is used, the template offsets for the previous row of 32×32 
blocks need to be stored. The offsets sx and sy each require 4-bits. Therefore, memory 
required for storing the offsets is 60 bytes for 1080p resolution and 120 bytes for 
3840×2160p resolution. 

6. Results 
The algorithm performance has been evaluated based on several video sequences with 
heavy film grain. Since the proposed technology removes film grain and adds similar 
grain, the objective metrics would not work well for this comparison. Therefore, an 
informal subjective comparison was used to evaluate the results of the algorithm. 
The video sequences were compressed using the AV1 video codec [11]. To test the 
proposed algorithm, the film grain was first removed from the sequences by hqdn3d 
denoising [12] from the ffmpeg package with parameters 6:6:6:6. The denoised 
sequences were compressed with the AV1 codec. Film grain was then added to the 
reconstructed sequences using the proposed algorithm. Note that the hqdn3d is a 
somewhat simple 3D denoising algorithm, not adapted for removing film grain. The 
subjective results would likely improve if a film-grain adaptive denoising is used. The 
following parameters were used for configuring the AV1 codec [11]: 
--input-bit-depth=10 --end-usage=q --cq-level=30 --lag-in-frames=25 --
auto-alt-ref=2 --profile=2 --bit-depth=10 --cpu-usage=2 

Figure 8 illustrates the subjective performance of the algorithm. The examples are 
cropped parts of the following video sequences: BreakingBad (a-b), 3840×2160@24fps, 
and TaxiDriver (c-d) and LawrenceOfArabia (e-f), 1920×1080@24fps. The first two 
sequences were encoded at QP30, and the latter at QP25. One can notice that the pictures 
on the right obtained with the proposed algorithm have better preserved film grain despite 
lower bitrate than those on the left where film grain is directly encoded. The subjective 
look of the motion video obtained with the proposed approach is also better and the film 
grain pattern is more temporally stable than the grain encoded by the AV1 directly, in 
which case grain is often completely removed or it manifests pulsing because of temporal 
quantizer variation. 

7. Conclusions and discussion 
The paper has presented film grain modeling and synthesis tool proposed for the AV1 
video codec [10]. The tool helps to preserve a film grain look of the encoded video while 
keeping significantly lower bitrate compared to the scenario when the film grain is 
directly encoded. The proposed model can support a range of different film noise  



 
(a) Coded at 22 137 kbps (b) With noise synthesis at 5 833 kbps 

 
(c) Coded at 13 112 kbps (d) With noise synthesis at 5 799 kbps 

 
(e) Coded at 5 729 kbps (f) With noise synthesis at 2 821 kbps 

Figure 8: Parts of the reconstructed frames; (a), (c), (e): AV1, (b), (d), (f): AV1 with 
proposed algorithm 

 



characteristics, varying from film grain to sensor noise. The most complex parts of the 
algorithm are at the encoder side, while the synthesis at the decoder side is rather 
inexpensive, except the need to write the renoised pictures to the memory, which can be 
mitigated by implementing the algorithm as part of the display processing chain. As such, 
the algorithm is suitable for implementing in the consumer electronics devices. Testing 
the algorithm on content with heavy film grain indicates that the subjective quality of the 
encoded content can be improved while the bitrate decreased. 
The results presented in this paper used a rather simple algorithm for denoising the input 
video. The authors believe that the results for both encoding and noise parameters 
estimation can be improved if better denoising algorithms for film grain are used, which 
could be a part of further research.  
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